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Abstract. Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes 

and the carbon cycle, and to infer relationships between climate, land use, and fire. However, differences in model 

structure and parameterizations, in both the vegetation and fire components of these models, could influence 40 

overall model performance, and to date there has been limited evaluation of how well different models represent 

various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation 

of state-of-the-art global fire models, with the aim of improving projections of fire regime characteristic and fire 

impacts on ecosystems and human societies under the context of global environmental change. Here we perform 

a systematic evaluation of historical simulations made by nine FireMIP models in order to quantify their ability to 45 

reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual 

total burnt area (39-536 Mha), and global annual fire carbon emission (0.91-4.75 Pg C a-1) for modern conditions 

(2002-2012), but most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking 

scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The 

models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and 50 

are largely unable to represent inter-annual variations in burnt area. However, models that represent cropland fires 

see improved simulation of fire seasonality in the northern hemisphere. The three FireMIP models which explicitly 

simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in 

key regions and this results in an underestimation of burnt area. The correct representation of spatial and seasonal 

patterns in vegetation appears to correlate with a better representation of burnt area.  While some FireMIP models 55 

are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across 

the full range of variables assessed. 

1 Introduction 

Fire is a crucial ecological process that affects vegetation structure, biodiversity, and biogeochemical cycles in 

all vegetated ecosystems (Bond et al., 2005; Bowman et al., 2016) and has serious impacts on air quality, health, 60 

and economy (e.g. Bowman et al., 2009; Lelieveld et al., 2015; Archibald et al., 2013). In addition to naturally 

occurring wildland fires, fire is also used as a tool for pasture management and to remove crop residues. Because 

fire affects a large range of processes within the Earth system, modules which simulate burnt area and fire 

emissions are increasingly included in dynamic global vegetation models (DGVMs) and Earth System Models 

(ESMs) (Hantson et al., 2016; Kloster and Lasslop, 2017; Lasslop et al., 2019). However, the representation of 65 

both wildfires and anthropogenic fires varies greatly in global models. This arises due to the lack of a 

comprehensive understanding of how fire ignitions, spread, and suppression are affected by weather, vegetation, 

and human activities, as well as the relative scarcity of long-term, spatially resolved data on the drivers of fires 

and their interactions (Hantson et al., 2016). As a result, model projections of future fire are highly uncertain 

(Settele et al., 2014; Kloster and Lasslop, 2017). Since vegetation mortality – including fire-related death – is one 70 

determinant of carbon residence time in ecosystems (Allen et al., 2015), differences in the representation of fire in 

DGVMs or ESMs also contributes to the uncertainty in trajectories of future terrestrial carbon uptake (Ahlström 

et al., 2015; Friend et al., 2014; Arora & Melton, 2018). Improved projections of wildfires and anthropogenic fires, 

their impact on ecosystem properties, and their socio-economic impact will therefore support a wide range of 

global environmental change assessments, as well as the development of strategies for sustainable management of 75 

terrestrial resources. 
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Although individual fire-enabled DGVMs have been evaluated against observations, comparisons of model 

performance under modern-day conditions tend to focus on a limited number of fire-related variables or specific 

regions (e.g. French et al., 2011; Wu et al., 2015; Ward et al., 2016; Kloster and Lasslop, 2017). Such comparisons 

do not provide a systematic evaluation of whether different parameterizations or levels of model complexity 80 

provide a better representation of global fire regimes than others. Likewise, none of the Coupled Model 

Intercomparison Projects that have been initiated to support the IPCC process (CMIP: Taylor et al., 2012; Eyring 

et al., 2016) focuses on fire, even though several of the CMIP models simulate fire explicitly. The Fire Model 

Intercomparison Project (FireMIP) is a collaborative initiative to systematically evaluate state-of-the-art global fire 

models (Hantson et al., 2016; Rabin et al., 2017).  85 

The FireMIP initiative draws on several different types of simulations, including a baseline historical simulation 

(1700-2013 CE) and sensitivity experiments to isolate the response of fire regimes to individual drivers, as well as 

simulations in which fire is deliberately excluded (Rabin et al., 2017). While the sensitivity and exclusion 

experiments provide valuable insights into model behaviour (Teckentrup et al., 2019; Li et al., 2019), the baseline 

historical simulation provides an opportunity to assess how well the models simulate modern conditions. Model-90 

model differences could reflect differences in the treatment of fire, of ecosystem processes, or how fire interacts 

with other aspects of the land surface in an individual model. Evaluation of the baseline simulations needs therefore 

to include evaluation of ecosystem processes and diagnosis of interactions between simulated vegetation and fire.  

Systematic model evaluation can also serve another purpose. The analysis of future climate and climate impacts 

is often based on results from climate and impact model ensembles (e.g. Kirtman et al., 2013; Collins et al., 2013; 95 

Warszawski et al. 2013) and these ensembles are also being used as a basis for impact assessments (e.g. Settele et 

al., 2014; Hoegh-Guldberg et al., 2019). However, there is increasing dissatisfaction with the idea of using the 

average behaviour of model ensembles without accounting for the fact that some models are less reliable than 

others (Giorgi and Mearns 2002; Knutti, 2010; Parker et al., 2013) and many have called for “the end of model 

democracy” (e.g. Held, 2005; Knutti, 2010). Although there is still considerable discussion about how to constrain 100 

models using observations, and then how to combine and possibly weight models depending on their overall 

performance or performance against a minimum set of specific criteria (e.g. Eyring et al., 2005; Tebaldi et al., 

2005; Gleckler et al., 2008; Weigel et al., 2008; Santer et al., 2009; Parker, 2013; Abramowitz et al., 2019), it is 

clear that results from systematic evaluations are central to this process. 

A number of papers have examined specific aspects of the FireMIP baseline simulations. Andela et al. (2017) 105 

showed that the FireMIP models do not reproduce the decrease in global burnt area over the past two decades 

inferred from analysis of version 4s of the Global Fire Emission Database (GFED4s) data product. In fact, four of 

the models show an increase in burnt area over the period 1997-2014. Although the remaining five models show 

a decrease, their mean decrease is only about one tenth of the observed rate (–0.13 ± 0.56% yr−1, compared to the 

observed trend of –1.09 ± 0.61% yr−1). However, the observed global decline of burnt area derived from satellite 110 

data is strongly dominated by African savanna ecosystems, the spatial pattern of trends is very heterogeneous, and 

the satellite record is still very short, which raises issues about the robustness of these trends (Forkel et al., 2019b). 

Li et al. (2019) compared modelled and satellite-based fire emissions and concluded that most FireMIP models 

fall within the current range of observational uncertainty. Forkel et al. (2019a) compared the emergent relationships 

between burnt area and multiple potential drivers of fire behaviour, including human caused ones, as seen in 115 

observations and the FireMIP models. They show that, although all of the models capture the observed emergent 

relationships with climate variables, there are large differences in their ability to capture vegetation-related 
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relationships. This is underpinned by a regional study using the FireMIP models over China, which showed that 

there are large differences in simulated vegetation biomass, and hence in fuel loads, between the models (Song et 

al., 2019). These results make a focus on benchmarking both simulated fire and vegetation particularly pertinent. 120 

Forkel et al. (2019a) showed that some of the FireMIP models, specifically those that include a relatively strong 

fire suppression associated with human activities (Teckentrup et al., 2019), were able to reproduce the emergent 

relationship with human population density. However, the treatment of the anthropogenic influence on burnt area 

has been identified as a weakness in the FireMIP models (Andela et al., 2017; Teckentrup et al., 2019; Li et al., 

2019; Forkel et al., 2019a), mainly due to a lack of process understanding. 125 

In this paper, we focus on quantitative evaluation of model performance using the baseline historical simulation 

and a range of vegetation and fire observational datasets. We identify (i) common weaknesses of the current 

generation of global fire-vegetation models (ii) factors causing differences between the models, and (iii) priorities 

for future model development. 

2 Methods 130 

2.1 Model Simulations 

The baseline FireMIP simulation is a transient experiment starting in 1700 CE and continuing to 2013 (see 

Rabin et al., 2017 for description of the protocol). Models were spun up until carbon stocks were in equilibrium 

for 1700 CE conditions (equilibrium was defined as <1% change over a 50 year time period for the slowest carbon 

pool in each grid cell) using land use and population density for 1700 CE, CO2 concentration for 1750 CE, and 135 

recycling climate and lightning data from 1901-1920 CE. Although the experiment is fully transient after 1700 

CE, annually varying values of all these forcings are not available until after 1900 CE.  Climate, land use, 

population and lightning were regridded to the native grid of each model. Global fire-vegetation models ran with 

either dynamic or prescribed natural vegetation (Table 1), but all used observed time-evolving cropland and pasture 

(if simulated) distribution.  140 

Nine coupled fire-vegetation models have performed the FireMIP baseline experiments. The models differ in 

complexity, representation of human impact and vegetation dynamics, and spatial and temporal resolution (Table 

1). A detailed description of each model is given in Rabin et al. (2017). Most of the models ran simulations for the 

full period 1700-2013, but CLASS-CTEM, JULES-INFERNO, MC2 and CLM simulated 1861-2013, 1700-2012, 

1902-2009 and 1850-2013 respectively. This slight deviation from the protocol does not affect the results presented 145 

here as we only analyse data for present-day period. 

2.2) Model Evaluation and Benchmarking  

Model performance was evaluated using site-based and remotely sensed global data sets of vegetation 

properties, fire occurrence and fire-related emissions (Figure 1; Figure S1). We used multiple datasets as targets 

for variables where they were available in order to take into account observational uncertainty. We used the GFED4 150 

(Giglio et al., 2013), GFED4s (Randerson et al., 2012), MCD45 (Roy et al., 2008), FireCC4.0 (Alonso-Canas and 

Chuvieco, 2015) and FireCCI5.1 (Chuvieco et al., 2018) burnt area datasets; the Global Fire Assimilation System 

(GFAS) fire emissions (Kaiser et al., 2012); fire size and number from Hantson et al. (2015); site-level net primary 

productivity (NPP) and gross primary productivity (GPP) from Luyssaert et al. (2007), as well as NPP from the 

Ecosystem Model/Data Intercomparison (EMDI; Olson et al., 2001), from Michaletz et al. (2014) and upscaled 155 

https://doi.org/10.5194/gmd-2019-261
Preprint. Discussion started: 8 January 2020
c© Author(s) 2020. CC BY 4.0 License.



5 
 

fluxnet GPP data (Jung et al., 2017; Tramontana et al., 2017); aboveground vegetation biomass from Carvalais et 

al. (2014) and Avitabile et al. (2016); and Leaf Area Index (LAI) from MODIS MCD15 (Myneni et al., 2002) and 

AVHRR (Claverie et al., 2016). A complete description of the reference data sets used for benchmarking is given 

in the Supplementary Information S1 and all datasets are plotted in Figure S1. For comparison and application of 

the benchmark metrics, all the target datasets and model outputs were resampled to a 0.5° grid. Although some 160 

models were run at a coarser resolution, the spatial resolution at which the benchmarking was performed had only 

a limited impact on the scores (Figure S2), which does not affect conclusions drawn here. Each model was 

compared to each reference dataset except in the few cases where the appropriate model output was not provided 

(e.g. LAI in ORCHIDEE, GPP in MC2). Only the models which incorporate the SPITFIRE fire module provided 

fire size and number results.  165 

While we use multiple datasets to attempt to quantify observational uncertainty, this only addresses one area 

of observational uncertainty. Most observation-based datasets don't provide estimates of measurement error and 

uncertainty. As well, most datasets haven't been independently validated and could suffer from methodological 

issues affecting quality. Therefore, large uncertainties still remain for most variables, even well-established ones 

such as burnt area (e.g. Roteta et al., 2019). When uncertainties of datasets are known one can take this into account 170 

by weight the model scores less for the less trustworthy datasets (e.g. Collier et al. 2018). However, as the 

uncertainty of most reference datasets are currently unknown, we haven't attempted that here and instead treat each 

dataset equally. As model benchmarking techniques become more sophisticated it would be beneficial to better 

evaluate the datasets the models are compared against to ensure the models are being benchmarked appropriately. 

We use the normalised mean error (NME), which is the mean absolute difference between a simulated and 175 

observed variable normalised by the observational variance, to assess each model’s ability to reproduce spatial 

patterns in annual average burnt area and the other variables that influence burnt area. We therefore removed the 

influence of biases in the mean and variance between model results and reference datasets (See Supplementary 

Information S2) because NME can be sensitive to the simulated magnitude and this furthermore limits the impact 

of observational uncertainties in the reference datasets. 180 

Seasonality comparisons were conducted in two parts: seasonal concentration (roughly equivalent to the 

inverse of season length) and phase, or timing, of the season. We calculated a mean seasonal “vector” in a given 

observed location or simulated cell based on the monthly distribution of burnt area throughout the year. The 

concentration is the length of this vector compared to annual burnt area, and ranges between 0 when fire is equally 

spread throughout the year to 1 when all burning occurs in the same month. The phase is indicated by the direction 185 

of the vector. Observed and modelled concentrations were compared using NME, and phases compared using the 

Mean Phase Difference (MPD) metric (see Supplementary Information S2). Three models simulate or provided 

only annual burnt area (LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, MC2) and thus the seasonality 

benchmarks could not be calculated for these models. We did not use FireCC4.0 to assess seasonality or interannual 

variability (IAV) in burnt area because it has a much shorter times series than the other burnt area products.   190 

NME and MPD are both proportional to mean absolute errors, so the smaller the value the better the model 

performance. A score of 0 represents a perfect match to observations. NME has no upper bound, whereas MPD 

has a maximum value of 1 when all cells have a maximum phase mismatch of 6 months. Model scores are further 

interpreted by comparing to two null models (Kelley et al., 2013): the “mean” null model compares the mean value 

of the observations to the observations; and the “randomly-resampled” null model compares observations 195 
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resampled 1000 times without replacement to the observations (Table 3). A detailed description of the 

benchmarking metrics is given in the Supplementary Information S2.  

 

 
Figure 1: Reference datasets, the mean of all models, and the % of models for which the estimate falls within 50-200% 200 
of the (mean) reference data are presented for a set of fire relevant variables. Results for the following variables are 
given: a) fraction burnt area; b) seasonal timing of burnt area (as measured by mean phase); c) burnt area season length 
(as measured by seasonal concentration); d) fire C emissions (g C m-2 yr-1); e) vegetation carbon (Mg/ha); and f) Leaf 
Area Index (LAI) (m2/m2). Stippling in the 2nd column indicates where variance between models is less than the FireMIP 
model ensemble mean. Purple in the 3rd column indicates cell where the majority of the FireMIP models produce poor 205 
simulations of the variable, while green areas indicate that the majority of the FireMIP models perform well for that 
aspect of the fire regime.  

 

https://doi.org/10.5194/gmd-2019-261
Preprint. Discussion started: 8 January 2020
c© Author(s) 2020. CC BY 4.0 License.



7 
 

 
Figure 2: Simulated versus observed burnt fraction in the present day (2002-2012), where “combined” indicates the 210 
mean of the different burnt area datasets considered. Stippling indicates where variance between burnt area datasets is 
less than the observed ensemble mean. 

3 Results  

3.1 Modern day model performance: burnt area and fire emissions 

The simulated modern (2002-2012) total global annual burnt area is between 39 and 536 Mha (Table 2). Most 215 

of the FireMIP models are within the range of the remotely sensed observed burnt area (354 to 468 Mha a–1). With 

the exception of MC2 and LPJ-GUESS-GlobFIRM, the models realistically capture the spatial patterns in burnt 

area (Figures 1 & 2) and perform better than either of the null models irrespective of the reference burnt area 

dataset (Table 3). CLM (NME: 0.63-0.80) and ORCHIDEE-SPITFIRE (0.70-0.73) are the best performing models. 

All the FireMIP models correctly simulate most burnt area in the tropics (24-466 Mha a–1) compared to observed 220 
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values in the range 312-426 Mha a–1 (Table 2). The simulated contribution of tropical fires to global burnt area is 

in the range of 56% to 92%, with all models except ORCHIDEE-SPITFIRE simulating a lower fraction than 

observed (89-93%). This follows from FireMIP models tending to underestimate burnt area in Africa and Australia, 

although burnt area in South American savannas is usually overestimated (Table 2). All of the FireMIP models, 

except LPJ-GUESS-GlobFIRM, capture a belt of high burnt area in central Eurasia. However, the models 225 

overestimate burnt area across the extratropics on average by 180% to 304%, depending on the reference burnt 

area dataset. This overestimation largely reflects the fact that the simulated burnt area over the Mediterranean basin 

and western USA is too large (Table 2, Figure 2).  

The FireMIP models that include a sub-annual time-step for fire calculations (CLM, CLASS-CTEM, JULES-

INFERNO, JSBACH-SPITFIRE, LPJ-GUESS-SPITFIRE, ORCHIDEE-SPITFIRE) generally reproduce the 230 

seasonality of burnt area (Figure 3), particularly in the tropics. The models capture the timing of the peak fire 

season reasonably well, with all of the models performing better than both null models for seasonal phase in burnt 

area (Table 3). However, all of the FireMIP models perform worse than both null models for seasonal concentration 

of burnt area, independent of the reference burnt area dataset. The observations show a unimodal pattern in burnt 

area in the tropics, peaking between November through February in the northern tropics and between June through 235 

October in the southern tropics (Figure 3). The models also show a unimodal pattern in both regions. However, all 

the FireMIP models except ORCHIDEE-SPITFIRE show a ~2-month delay in peak burnt area in the northern 

tropics, and the period with high burnt area is also less concentrated than observed. Some models (ORCHIDEE-

SPITFIRE, LPJ-GUESS-SPITFIRE) estimate peak burnt area ~1-2 months too early in the southern tropics, while 

others simulate a peak ~1 month too late (JULES-INFERNO, CLM, CLASS-CTEM) or have a less concentrated 240 

peak (JSBACH-SPITFIRE, JULES-INFERNO) than observed. The seasonality of burnt area in the northern 

extratropics shows a peak in spring and a second peak in summer. Only CLM reproduces this double peak, while 

all of the other FireMIP models show a single summer peak. Most of the models simulate the timing of the summer 

peak well. The only exception is LPJ-GUESS-SPITFIRE, which simulates the peak ~2-3 months too late. The 

observations show no clear seasonal pattern in burnt area over the southern extratropics, although the most 245 

prominent peak occurs in December and January. All the FireMIP models, except LPJ-GUESS-SPITFIRE, 

reproduce this mid-summer peak. LPJ-GUESS-SPITFIRE shows little seasonality in burnt area in this region.  

The FireMIP models have problems representing IAV in global burnt area, with some models (CLASS-CTEM, 

MC2) worse than the random model and most models performing worse than the mean for most of the target data 

sets (Table 3). However, there is considerable uncertainty in the observed IAV in burnt area (Figure 4), and the 250 

scores are therefore dependent on the reference dataset considered, with generally worse scores for FireCCI5.1 and 

GFED4s compared to the other datasets. Observational uncertainty is most probably underestimated as the burnt 

area products are not independent, since they all rely on MODIS satellite imagery. Despite the failure to reproduce 

IAV in general, most of the models show higher burnt area in the early 2000s and a low in 2009-2010 after which 

burnt area increased again (Figure 4). 255 

The spatial patterns in simulated fire-related carbon emissions are in line with the reference data, with most 

FireMIP models except LPJ-GUESS-GlobFIRM, MC2 and LPJ-GUESS-SPITFIRE performing better than the 

mean model. CLM, JULES-INFERNO and JSBACH-SPITFIRE are the best performing models with NME scores 

< 0.8. Seasonality in fire emissions mimics the results for burnt area with good scores for seasonal phase, but all 

models perform worse than the mean null model for seasonal concentration. CLM is the only FireMIP model to 260 

explicitly include peatland, cropland and deforestation fires, which contribute 3%, 3% and 20% respectively of the 
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global total emissions annually (van der Werf et al., 2010), but it nevertheless does not perform better than JULES-

INFERNO and JSBACH-SPITFIRE in representing the spatial pattern of fire carbon emissions. 

Only three models (JSBACH-SPITFIRE, LPJ-GUESS-SPITFIRE, ORCHIDEE-SPITFIRE) provided 

information about simulated numbers and size of individual fires. All three models performed better than the mean 265 

null model in representing the spatial pattern in number of fires but worse than the mean model for fire size (Table 

3). While the spatial pattern in simulated fire number is in agreement with observations over large parts of the 

globe, models tend to overestimate fire numbers in dryland areas such as Mexico and the Mediterranean basin 

(Figure 5). None of the three models simulate cropland fires and so they do not capture the high number of cropland 

fires (Hall et al., 2016) in central Eurasia (Table 2). Models simulate smaller fires than observed in areas where 270 

burnt area is large and where models tend to underestimate burnt area, especially in the African savanna regions 

(Figure 5). 

 

 
Figure 3: Simulated and observed seasonality (2002-2012) of burnt area (% of annual burnt area per month) for a) 275 
northern extratropics (> 30°N), b) northern tropics (0-30°N), c) southern tropics (0-30°S) and d) southern extratropics 
(> 30°S). The mean of all the remotely sensed burnt area datasets is shown as a black line, with the minimum and 
maximum range shown in light grey. 

 

 280 
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3.2. Present day model performance: Vegetation properties  
Fire spread and hence burnt area is strongly influenced by fuel availability, which in turn is affected by 

vegetation primary production and biomass. Simulated spatial patterns of GPP compare well with estimates of 285 

GPP upscaled from Fluxnet data (Jung et al., 2017), with scores (0.39-0.67) considerably better than both null 

models. However, performance against site-based estimates of GPP (Luyssaert et al., 2007) are considerably poorer 

(1.09-1.49) and worse than the mean null model. Only LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE 

and ORCHIDEE-SPITFIRE perform better than the random null model. There is no clear relationship between 

model scores for the two datasets: models performing better when compared to the Jung dataset do not necessarily 290 

show a higher score when compared to the Luyssaert GPP dataset. The two GPP datasets are very different: The 

upscaled FLUXNET dataset is a modelled product but has global coverage (see Supplementary Information S1) 

while the Luyssaert dataset has local measurements but only at a limited number of sites, largely concentrated 

across the northern extratropics. Thus, the better match between the FireMIP models and the upscaled FLUXNET 

dataset may reflect the broader spatial coverage or the fact that climate and landcover data are used for upscaling.   295 

Only the upscaled Fluxnet data provides monthly data and can thus be used to asses GPP seasonality.  The 

FireMIP models are able to represent the seasonal peak timing in GPP, with all models performing better than the 

mean and random null models. However, models have difficulty in representing the length of the growing season, 

with the scores for seasonal concentration in GPP (1.08-1.23) above the mean null model but below the random 

null model for all FireMIP models.  300 

Model performance is better for site-level NPP than site-level GPP. All of the FireMIP models perform better 

than the mean null model, independent of the choice of reference data set (Table 3), except for CLASS-CTEM 

against the Luyssaert data set. JULES-INFERNO, JSBACH-SPITFIRE and MC2 are the best-performing models.  

The FireMIP models generally capture the spatial pattern in LAI, with all models performing better than the 

mean null model (0.44-0.81), independent of the reference dataset considered. JULES-INFERNO has the best 305 

score for both reference datasets. Although the overall global pattern in LAI is well represented in all the FireMIP 

models, they have more trouble representing LAI in agricultural areas such as central USA or areas with low LAI 

such as drylands and mountain areas (Figure 1). 

The FireMIP models perform well in representing the spatial pattern carbon in vegetation (Table 3). All nine 

models perform better than the mean null model, independent of reference dataset, with ORCHIDEE-SPITFIRE 310 

having the best scores. Generally, the models are able to simulate carbon in tropical vegetation and the forested 

regions in the temperate and boreal region reasonably well, but struggle across most dryland systems (Figure 1).  
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Figure 4: The range in inter-annual variability in burnt area for the years 2001-2012 for all models and burnt area 
datasets which span the entire time period (GFED4, GFED4s, MCD45, FireCCI51). Results from the individual 315 
FireMIP models, as well as the observational minimum-maximum values, are plotted. 

 

3.3 Overall assessment 

There is no model that outperforms other models across the full range of fire and vegetation benchmarks 

examined here. Model structure does not explain the large differences in model performance. Process-based fire 320 

models (see table 1) appear to be slightly better able to represent the spatial pattern in burnt area than empirical 

models (mean score 0.87 and 0.94 respectively), but this difference is largely the result of including GlobFIRM in 

the empirical model ensemble; removing this model results in a mean score of 0.87 for these models. The inter-

model spread in scores within each group is much larger than the difference between the two types of model. Only 

one empirical model simulates fire seasonality, but this model performs worse than each of the process-based 325 

models, independent of reference dataset considered. There is no difference in the performance of process-based 

and empirical models with respect to IAV in burnt area, seasonal phase in burnt area or fire emissions.  

The FireMIP simulations include three models in which versions of the same process-based fire module 

(SPITFIRE) are coupled to different vegetation models. These three models produce a wide range of benchmarking 

scores for burnt area, with mean benchmarking scores of 0.79, 0.85 and 0.72 for JSBACH, LPJ-GUESS and 330 

ORCHIDEE respectively. There are also large differences between these models in terms of other aspects of the 

fire regime (Table 3). As there are only moderate differences between the different SPITFIRE implementations 

(Rabin et al., 2017), this suggests that the overall difference between the models reflect feedbacks between the fire 

and vegetation modules. 

Models using prescribed vegetation biogeography (CLM, CLASS-CTEM, JSBACH-SPITFIRE, ORCHIDEE-335 

SPITFIRE) represent the spatial pattern of burnt area better than models with dynamic vegetation (JULES-

INFERNO, LPJ-GUESS-SPITFIRE, LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, MC2), with 

respective mean benchmarking scores across all burnt area data sets of 0.79 and 0.97. This difference is still present 

even when LPJ-GUESS-GlobFIRM and MC2 are not included (0.90). It seems likely that models using prescribed 

vegetation biogeography have a better representation of fuel loads and flammability. This can also partially be seen 340 
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in the positive relationship between the benchmarking scores of vegetation carbon and burnt area spatial patterns 

for at least the GFED4, FireCCI4.0 and FireCCI5.1 burnt area reference datasets (mean R2 = 0.31, range 0.19-

0.38). Areas where the FireMIP models represent vegetation carbon poorly coincide with some of the regions 

where models have trouble representing the spatial pattern of burnt area such as dryland regions (Figure 1). 

Although there is no relationship between GPP/NPP and burnt area benchmarking scores, there is a positive 345 

relationship between simulated burnt area scores and the seasonal concentration of GPP (R2 = 0.30-0.84) and, to a 

lesser extent, the seasonal phase of GPP (R2 = 0.09-0.24). This supports the idea that seasonal vegetation 

production and senescence, which have an important influence on fuel loads, drive the interactions between 

vegetation and fire within each model.  

Fire carbon emission benchmarking scores are strongly related to the burnt area performance (R2 > 0.85 for 350 

GFED4s and MCD45 and >0.45 for FireCCI4.0 and GFED4). This indicates that simulated burnt area is the main 

driver of fire emissions, overriding spatial patterns in fuel availability and consumption. However, the 

benchmarking scores for the spatial pattern in burnt area are better overall than those for fire carbon emissions.  

Models that explicitly simulate the impact of human suppression on fire growth or burnt area (CLM, CLASS-

CTEM, JSBACH-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE) are better at representing the spatial pattern in 355 

burnt area compared to models which do not include this effect (0.85 and 0.93 respectively). In the case of the 

three process-based models (CLM, CLASS-CTEM, JSBACH-SPITFIRE) this is most probably because the spatial 

pattern in fire size is better represented (Table 3). 

CLM is the only model that incorporates cropland fires (Table 1) and it is also the only model which captures 

the spring peak in burnt area in the northern extratropics associated with crop fires (e.g. Le Page et al., 2010; Magi 360 

et al., 2012, Hall et al., 2016). This might also contribute to the good overall score of CLM for spatial pattern of 

burnt area. 

 
 
Figure 5: Reference datasets and mean of three models for number of fires and mean fire size. Model output is adapted 365 
so that mean and variance coincide with observations as the total values are not directly comparable (See Supplementary 
Information S1). Stippling indicates where variance between models is less than the model ensemble mean. 
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4 Discussion and future model development  

There are large differences in the total burnt area between the FireMIP models, with two models (LPJ-GUESS-

GlobFIRM and MC2) falling well outside the observed range in burnt area for the recent period. In the case of 370 

LPJ-GUESS-GlobFIRM, this is because GlobFIRM was developed before global burnt area products were 

available, resulting in a general poor performance (Kloster and Lasslop, 2017), in combination with the fact that 

structural changes were made to the vegetation model without a commensurate development of the fire module. In 

the case of MC2, this probably reflects the fact that MC2 was developed for regional applications but was applied 

globally here without any refinement of the fire model. The other FireMIP models used the burned area datasets 375 

to develop and tune their models. They therefore capture the global spatial patterns of burnt area reasonably well, 

although no model simulates the very high burnt area in Africa and Australia causing a general underestimation of 

burnt area in tropical regions and overestimation in extratropical regions. The analysis of a limited number of 

models suggests that process-based fire models do not simulate the spatial patterns in fire size well (Table 3). In 

particular they fail to represent fire size in tropical savannas (Figure 5), most probably because they assume a fixed 380 

maximum fire duration of less than one day (Hantson et al., 2016) while savanna fires are often very long-lived 

(e.g. Andela et al., 2019). However, models that include a human limitation on fire growth represent the global 

spatial pattern in burnt area and fire size better. These results indicate that process-based fire models can be 

improved by a better representation of fire duration. The recently generated Global Fire Atlas (Andela et al., 2019) 

includes aspects of the fire behaviour (e.g., fire spread rate and duration), which offer new opportunities to examine 385 

and parameterize fire burning processes simulated by these models. 

Inter-model differences in burnt area are related to vegetation production and carbon stocks. Furthermore, we 

find that models which are better at representing the seasonality of vegetation production are also better at 

representing the spatial pattern in burnt area. This indicates that seasonal fuel build-up and senescence is an 

important driver of global burnt area. These results are consistent with the analysis of emergent relationships in 390 

FireMIP models, which shows the need to improve processes related to plant production and biomass allocation 

to improve model performance in simulating burnt area (Forkel et al., 2019a). While there are spatially explicit 

global estimates regarding carbon stocks in live vegetation, there is limited information about carbon stocks of 

different fuel types and how these change between seasons and over time (van Leeuwen et al., 2014; Pettinari & 

Chuvieco, 2016). The lack of high-quality fuel availability data currently limits our ability to constrain simulated 395 

fuel loads.  

The FireMIP models generally do not simulate the timing of peak fire occurrence accurately and tend to 

simulate a fire season longer than observed. This might be related to the representation of seasonality in vegetation 

production and fuel build up. However, human activities can also change the timing of fire occurrence (e.g. Le 

Page et al., 2010; Rabin et al., 2015), and so an improved representation of the human influence on fire occurrence 400 

and timing could also help to improve the simulated fire seasonality. The importance of the anthropogenic impact 

on fire seasonality is especially clear in the northern extratropics (e.g. Le Page et al., 2010; Magi et al., 2012), 

where the only model that explicitly includes crop fires (CLM) is also the only model that shows the bimodal 

seasonality. 

Global inter-annual variability in burnt area is largely driven by drought episodes in high biomass regions and 405 

fuel buildup after periods of increased rainfall in dryland areas (e.g. Chen et al., 2017). Previous analysis has shown 

that the FireMIP models are relatively good at representing emergent climate-fire relationships (Forkel et al., 

2019a); hence it seems plausible that fuel buildup and its effect on subsequent burnt area is not well represented 
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in the models and that this is the reason for the poor simulation of IAV in burnt area. This is in line with our 

findings and the findings of Forkel et al. (2019a) that fire models are not sensitive enough to previous previous-410 

season vegetation productivity.  

The spread in simulated global total fire emissions is even larger than for burnt area, but fire emissions largely 

follow the same spatial and temporal patterns as burnt area (Figure 1, table 3). However, the benchmark scores for 

emissions are worse than those for burnt area. This reflects the fact that emissions are the product of both errors in 

simulated vegetation and burnt area. Furthermore, spatial and temporal uncertainties in the completeness of 415 

biomass combustion will affect the emissions. While improvements to vegetation and fuel loads are likely to 

produce more reliable estimates of emissions, an improved representation of the drivers of combustion 

completeness in models will also be required for more accurate fire emission estimates. Only one of the FireMIP 

models (CLM) includes cropland, peatland, and deforestation fire explicitly, albeit in a rather simple way. Our 

analyses suggest that this does not produce an improvement in the simulation of either the spatial pattern or timing 420 

of carbon emissions. However, given that together these fires represent a substantial proportion of annual carbon 

emissions, a focus on developing and testing robust parameterisations for these largely anthropogenic fires could 

also help to provide more accurate fire emission estimates. 

 

 425 
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Table 1: Brief description of the global fire m
odels that ran the FireM

IP baseline experim
ents. Process indicates m

odels w
hich explicitly sim

ulate ignitions and fire spread. A
 detailed overview

 can 
be found in R

abin et al. (2017).  

M
odel 

Dynam
ic Biogeography 

Fire m
odel type 

Hum
an suppression of fire spread/ 

burnt area 
Spatial resolution (lon x lat) 

Tem
poral resolution 

Reference 

CLM
 

N
o 

Process 
Yes 

2.5° x  1.9°  
Half hourly 

Li et al., 2013 

CLASS-CTEM
 

N
o 

Process 
Yes 

2.8125° x 2.8125° 
Daily 

M
elton and Arora, 2016 

JULES-IN
FERNO 

Yes, but w
ithout fire feedback 

Em
pirical 

N
o 

1.875° x 1.245°  
Half hourly 

M
angeon et al., 2016 

JSBACH-SPITFIRE 
N

o 
Process 

Yes 
1.875°  x 1.875° 

Daily 
Lasslop et al., 2014 

LPJ-GUESS-SPITFIRE 
 Yes 

Process 
N

o 
0.5° x 0.5° 

Daily 
Lehsten et al., 2009 

LPJ- GUESS-GlobFIRM
 

Yes 
Em

pirical 
N

o 
0.5° x 0.5° 

Annual 
Sm

ith et al., 2014 

LPJ-GUESS-SIM
FIRE-BLAZE 

Yes 
Em

pirical 
Yes 

0.5° x 0.5° 
Annual 

Knorr et al., 2016 

M
C2 

Yes 
Process 

N
o 

0.5° x 0.5° 
M

onthly 
Bachelet et al., 2015 

O
RCHIDEE-SPITFIRE 

N
o 

Process 
N

o 
0.5° x 0.5° 

Daily 
Yue et al., 2014 
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Table 2: Sim
ulated and observed burnt area (M

ha) for the period 2002-2012 for the globe and for key regions including the northern extratropics (N
ET, > 30°N

), the southern extratropics 
(SET, > 30°S), the tropics (30°N

 - 30°S), the savanna regions of A
frica (18°W

-40°E &
 13°N

-20°S), the savanna region of South A
m

erica (42°-68°W
 &

 9°S-25°S), A
ustralian Savanna (120°E-

155°E &
 11°S-20°S), the agricultural band of central Eurasia (30°E-85°E &

 50°N
-58°N

), the M
editerranean basin (10°W

-37°E &
 31°N

-44°N
), and the w

estern U
SA

 (100°-125°W
 &

 31°N
-

43°N
). D

ata availability for FireC
C

I40 is lim
ited to 2005-2011 and for M

C
2 to 2002-2009. 

 

  
G

lobal 
N

ET 
Tropics 

SET 
S-A

m
erican savanna 

A
frican 

savanna 

A
ustralian 

savanna 
C

entral Eurasia 
M

editerranean 

basin 
w

estern U
SA

 

G
FED

4s 
468 

39 
426 

4 
18 

295 
35 

8.5 
1.3 

1.0 

G
FED

4 
349 

27 
319 

3 
14 

218 
34 

5.2 
0.8 

0.9 

M
C

D
45 

348 
33 

312 
4 

13 
232 

25 
7.0 

2.0 
0.9 

FireC
C

I40 
345 

23 
320 

2 
8 

237 
25 

6.8 
1.1 

0.8 

FireC
C

I51 
387 

37 
347 

3 
14 

230 
38 

10.2 
1.3 

1.1 

C
LM

 
454 

77 
362 

15 
36 

194 
15 

7.9 
9.3 

3.4 

C
LA

SS-C
TEM

 
536 

41 
466 

28 
46 

172 
20 

2.0 
4.3 

9.5 

JU
LES-IN

FER
N

O
 

343 
70 

261 
12 

23 
121 

20 
5.2 

11.7 
6.1 

JSB
A

C
H

-SPITFIR
E 

457 
114 

318 
25 

21 
166 

17 
15.5 

9.5 
9.7 

LPJ-G
U

ESS-G
lobFIR

M
 

39 
14 

24 
1 

3 
7 

3 
0.6 

0.6 
0.5 

LPJ-G
U

ESS-SPITFIR
E 

393 
99 

280 
14 

51 
135 

2.8 
12.5 

14.5 
6.1 

LPJ-G
U

ESS-SIM
FIR

E-

B
LA

ZE 
482 

86 
381 

15 
72 

146 
27 

3.4 
7.9 

14.9 

M
C

2 
97 

40 
54 

3 
2 

17 
2 

0.9 
5.0 

2.2 

O
R

C
H

ID
EE-SPITFIR

E 
471 

16 
435 

19 
13 

246 
81 

2.4 
2.4 

0.3 
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Table 3: Benchmarking scores after removing the influence of differences in the mean and variance for each individual 
global fire model for key fire and vegetation variables. A lower score is “better”, with a perfect score equal to 0. The 760 
full table with all benchmarking scores is presented in Table S1. Dataset information can be found in Supplementary 
Information S1. LPJ-G = LPJ-GUESS. 

 
Dataset Mean random CLM CLASS-

CTEM 
JULES 
INFERNO 

JSBACH 
SPITFIRE 

LPJ-G 
GlobFIRM 

LPJ-G 
SPITFIRE 

SIMFIRE 
-BLAZE 

MC2 ORCHIDEE 
SPITFIRE 

Burnt area 
            

spatial GFED4s 1 1.07 0.63 0.79 0.72 0.70 1.06 0.94 0.88 1.00 0.72  
GFED4 1 1.14 0.80 0.93 0.85 0.86 1.08 0.98 0.88 1.07 0.71  
MCD45 1 1.16 0.65 0.81 0.72 0.69 1.12 0.93 0.92 1.02 0.70  
FireCCI40 1 1.13 0.77 0.98 0.89 0.92 1.09 0.93 0.97 1.13 0.73 

 FireCCI51 1 1.11 0.83 1.01 0.91 0.93 1.11 0.96 0.97 1.23 0.70 
             

seasonal GFED4s 0.56 0.22 0.12 0.12 0.13 0.12 
 

0.31 
  

0.31 
phase GFED4 0.49 0.47 0.34 0.35 0.41 0.42 

 
0.33 

  
0.31  

MCD45 0.56 0.26 0.12 0.11 0.12 0.12 
 

0.30 
  

0.30  
FireCCI40 0.60 0.12 0.16 0.43 0.17 0.16 

 
0.33 

  
0.32 

 FireCCI51 0.55 0.25 0.26 0.28 0.33 0.32  0.32   0.31 
             

seasonal GFED4s 1 1.36 1.16 1.15 1.24 1.15 
 

1.13 
  

1.22 
concentration GFED4 1 1.35 1.19 1.12 1.25 1.11 

 
1.18 

  
1.19  

MCD45 1 1.36 1.14 1.08 1.26 1.13 
 

1.12 
  

1.20  
FireCCI40 1 1.34 1.31 1.26 1.36 1.25 

 
1.29 

  
1.30 

 FireCCI51 1 1.36 1.25 1.22 1.33 1.21  1.20   1.27 
             

IAV GFED4s 1 1.46 1.17 0.65 1.18 1.09 0.66 1.36 0.76 1.66 1.44  
GFED4 1 1.27 0.98 1.62 1.23 0.89 1.04 1.08 1.00 1.41 1.25  
MCD45 1 1.32 0.93 1.34 1.11 0.84 0.73 0.97 1.27 1.67 1.22 

 FireCCI5.1 1 1.42 1.18 1.53 1.24 1.27 1.73 1.27 1.23 1.87 1.12 
  

fire emission  
spatial GFAS 1 1.08 0.78 0.85 0.73 0.74 1.13 1.03 0.91 1.06 0.86 
 

            

seasonal phase GFAS 0.78 0.18 0.16 0.20 0.17 0.15 
 

0.37 
  

0.34 
 

            

seasonal 
concentration 

GFAS 1 1.36 1.20 1.22 1.30 1.17 
 

1.27 
  

1.25 
            

IAV GFAS 1 1.36 0.77 1.70 1.28 1.09 1.42 1.42 1.11 1.41 1.49 
             

Fire number             
spatial Hantson 1 1.19 

   
0.96 

 
0.83 

  
0.76 

             

Fire size             
Spatial Hantson 1 1.31 

   
1.03 

 
1.22 

  
1.12 

             

GPP 
            

spatial Luyssaert 1 1.39 1.49 1.41 1.46 1.39 1.41 1.24 1.37 
 

1.09 
spatial Jung 1 1.30 0.64 0.46 0.39 0.42 0.46 0.67 0.43 

 
0.49 

             

seasonal phase Jung 0.42 0.65 0.18 0.23 0.19 0.23 
 

0.22 
  

0.22 
             

seasonal 
concentration 

Jung 1 1.65 1.08 1.19 1.14 1.21 
 

1.19 
  

1.09 

             

NPP 
            

spatial Michaletz 1 1.39 0.82 0.79 0.77 0.75 0.96 0.86 0.89 0.88 0.99 
spatial Luyssaert 1 1.33 0.90 1.01 0.53 0.76 0.82 0.87 0.79 0.68 0.84 
spatial EMDI 1 1.30 0.91 0.87 0.58 0.66 0.79 0.83 0.81 0.65 0.80 
             

LAI             
spatial MCD15 1 1.29 0.60 0.53 0.44 0.78 0.70 0.61 0.57 0.63  
spatial AVHRR 1 1.29 0.81 0.71 0.49 0.65 0.74 0.62 0.61 0.64  
             

Carbon in 
vegetation 

 
           

spatial Avitabile 1 1.32 0.69 0.88 0.76 0.78 0.76 0.76 0.74 0.80 0.70 
spatial Carvalhais 1 1.32 0.66 0.66 0.58 0.64 0.62 0.66 0.58 0.67 0.54 
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